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We consider the density expansion of the Kolmogorov-S{K&) entropy per particle for a dilute gas in
equilibrium, and use methods from the kinetic theory of gases to compute the leading term. For an equilibrium
system, the KS entropliks is the sum of all of the positive Lyapunov exponents characterizing the chaotic
behavior of the gas. We computgs/N, whereN is the number of particles in the gas. This quantity has a
density expansion of the fortn.s/N=av[ — In n+b-+0(n)], wherev is the single-particle collision frequency
and n is the reduced number density of the gas. The theoretical values for the coeffiziemsb are
compared with the results of computer simulations, with excellent agreemeat &ord less than satisfactory
agreement fob. Possible reasons for this differencebirare discussedS1063-651X97)06911-Q

PACS numbds): 05.45+b, 05.20.Dd

One of the important quantities characterizing the chaotig,gted byﬂ andJi , respectively, witi =1, ... N. The par-
behavior of a dynamical system is the Kolmogorov-Sinaiticles interact with strongly repulsive, short-range forces
(KS) entropy,hgs [1,2]. If the system is isolated and closed, with a finite range of the interparticle force, In the case
i.e., there is no escape of particles from the system, therpat the particles are hard disks or hard sphevess the
according to Pesin’s theorefg], hys is the sum of all the  diameter of each particle. Our goal is to determine the KS
positive Lyapunov exponents of the system, where thentropy per particlehys/N, in the thermodynamic limit, as-
Lyapunov exponents characterize the rate of exponentiadyming that the system is in thermal equilibrium at tempera-
separation of the system’s trajectories in phase space. Thigre T, and at low densities witmo9<1, wheren is the
quantity is of considerable interest because a positive K§ymber densityn=N/V, V is the volume of the system, and
entropy implies that the system is chaotic with strong mixingq is the dimension of the systerd=2 and 3.
and ergodic properties, and because the KS entropy measures\ye consider the trajectory of our system on the constant

the rate at which information about the phase space trajectemnergy surface in thedN-dimensional phase spadg, start-
ries is produced by the dynamics. Further, sums of Lyapunoy g from some initial point X0=(F1(O),51(0),F2(0),

exponents figure prominently in the expressions for transporl{1 - - X
coefficients of fluids in terms of dynamical quantitig4]. ~ U2(0), - - - Fn(0),vn(0)). We then consider a bundle of tra-
Recently, methods based upon the kinetic theory of gaségctorles _that start at_ |nf|n|te§|mally nearby points in phase
have been applied to compute the chaotic properties ofPace, With each trajectory in the bundle denotedxi§9)
simple systems such as hard disk and hard sphere LorentzéX(0), for some infinitesimal 6X(0)=(ér(0),
gases[5-8], as well as Lorentz lattice gas¢8,10. This  5v,(0), ...,8ry(0),80,(0)). The time rate of separation of
work has shown that it is possible to calculate theoreticallythis trajectory bundle in the various directions perpendicular
Lyapunov exponents for Lorentz gases at low density undeto the direction of flow, if exponential, is characterized by a
a variety of equilibrium and nonequilibrium situations. The set of nonzero Lyapunov exponents which are positive in the
theoretical results agree very well with computer simulationsexpanding directions and negative in the contracting ones.
for the same quantities. Here we show how kinetic theoryThe KS entropy is, for our system, given by the sum of all of
methods can be extended to a calculation of the leading terithhe positive Lyapunov exponents, by Pesin’s theoférg].
in the density expansion of the equilibrium KS entropy of In order to determine the Lyapunov exponents and their sum,
dilute gases composed bf particles interacting with short- we need to follow the dynamics of the trajectory bundle over
range forces. This extension of the methods developed eas timet very large compared to some characteristic micro-
lier for Lorentz gases to systems WNf moving particles al- scopic timety, which for low-density systems can be taken
lows us to begin a thorough exploration of the chaoticto be the mean free time between collisions for a typical
properties of systems with large numbers of moving parparticle. Recently Dellago, Posch and Hoover, as well as
ticles, as well as of Lorentz gases, both in and outside equicaspard and Dorfman, obtained the equations of motion for
librium states. In subsequent publications van Beijeren and trajectory bundle in phase space for a system of hard disk
van Zon[11] will describe methods to obtain the largest or hard sphere particléd,12,13. These equations also apply
positive Lyapunov exponent for a dilute gas in equilibrium. to any system of particles with strong short-range interaction
We consider a gas composed Mfidentical particles in  potentials, provided we neglect effects due to collisions in-
equilibrium. The particles obey classical mechanics, eackolving more than two particles at a time, or due to the finite
have massn=1, and their positions and velocities are de-duration of collisions taking place in the fluid. To lowest
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order in the density, these multiple collision and finite colli- where, for later convenience, we introduce the center-of-

sion time effects may be ignored, and the dynamics may bghass velocity, = 3[v,+v,], in addition to the relative ve-
thought Of as perloq_s of free motion c.)f the part!cles punquhcity of the colliding pair of particles. Herén is the infini-
ated by binary collisions between pairs of particles. Duringye gjm displacement of the unit vector in the direction of

the free motion, the positions and velocities of the particlescloSest approach, due to the displacement of the trajectory,

change with time according to ~ A -~
g g andn- én=0. To calculateSn we use the coupled equations
Ty - for the location of the collision for both the undisplaced and
fi=ri(0)+v (O, @ the displaced trajectories:

vi()=0;(0) for i=1,...N. ) GN=T, o 7101~ Fro— Tk (10)

Here the timet=0 represents the instant of the last binary
collision in the system, and timteis some time between the

last binary collision and the next. When a collision takesyhere we have kept terms to linear order in the deviations.
place between particlds and|, say, there is an effectively pyerar s the position of particlé at the instant of its last

instantaneous change in the velocities of partidleand | collision with another particle in the system, and similarly

while the positions and velocities of all of the othér2 for To e Al is the ti | df the last collisi f
particles are unaffected. Immediately after thé collision, Or I'eo. AISO, 7 1S the M€ elapsed from INe 1ast collision o
particlel until its collision with k, with a similar definition

the positions and velocities of the two particleésand| are . ; ) L
P P = for 7. Finally 67 is the difference in time between thek

given by collision for the displaced and the undisplaced trajectories.
We assume here that in our calculationh@k/N, the domi-
nant terms will come from terms proportional 1g,= (7,
5, o+ s aLa + 71)/2 which is on the order of the free time between colli-
vy =v;~[vy-n]n, (4 sions of particles in the system, and which scales inversely
A with the density of the gas. For low densities this free time
F, = Fk+ on. (5) can be quite large, and our assumption is that we can neglect
A the termér, o— &r o in Eq. (11) compared to terms propor-
Heren is a unit vector from the center of particleto the tional to the times between collisions for each of the par-
center of particlé at the point of closest approach during the ticles. This assumption will be discussed further in the con-

binary collision,v,=v,— vy andv,-n<0. The free motion  cluding remarks. Then using the condition Sn=0, and

of the otherN—2 particlesi #k andl is not affected by the changing to center-of-mass and relative velocities, we finally
k-1 collision. Now we consider the other trajectories in theobtain equations for the change in the displaced center of
nearby bundle. We assume that the bundle is sufficientlynass and displaced relative velocities of partideend| at
narrow that all trajectories in the bundle exhibit the samethe k-1 collision:

collisions in the same sequence, with slight differences in the

Géﬁ: 5F| 0 5Fk,0+ J|k57-|k+ ) 5l;| - Tkél;k y (11)

vg=vi+[vy-nIn, 3

times of the collisions, in the velocities and positions before sv/=6v; for i#k,l, (12)
and after the collisions, and in the points of closest approach.
The analysis of Dellago, Posch, and Hoover leads immedi- Ny= Ny, (13)

ately to equations of motion for the deviations of the posi-
tions and velocities in the trajectory bundle from the main

- - - I - -
trajectory. During the free motion between collisior; 6v|’k=5v|k—2(5v|k~n)n—(;)[t”{((v,k'&vk,)
and év; evolve according to

2
> - > Uk > ~ - - > - > - A
ori(t)=6r;(0)+tsv;(0), (6) —W(Wkrn) n+5Vk|(vlk'n)—v|k(5vk|'n)]
Uik
Sui(t)=6v;(0). ) o 2\
" , _ Tl | (i Svi) = —=—=-(dv-n) In
Whenever a collision takes place in the system, the devia- (v1-N)
tions in positions and velocities of the colliding particles are
directly affected, while those of the other particles are not. - Al = - A
The velocity deviations for the colliding pair, say particles (- ovik—vik(Svik- H)H : (14
andl, can be obtained from Eg€) and(4) by taking linear
deviations; that is, Heret, = n,— 7. Using these equations we can express the
) ) ) R change of the velocity deviations of all of the particles at a
V| =3[ dvi+ v 1=V, (8) k-l collision as a matrixv, acting on the column vectaiv
whose elements are the velocity deviationsy; for i
55(;(555(—55&=55|k—2(55|k'ﬁ)ﬁ =1,... N, as év'=My,- év. Here M, has the value 1

L along the diagonal for the elements corresponding toNthe
—2[(v - Sn)n+(v-N)dn], (9 — 2 particles which are not involved in thel collision, and
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nonzero elements for the changes in the velocity deviations/here v is the average collision frequency per particle, so

for particlesk andl, which can be obtained from Egil3)  that the number of collisions taking place in the gas per unit

and(14) in terms of the pre-collision velocity deviations and time is N»/2 (each collision involves two particlgsand the

the timesT,; andt; . All other matrix elements oM,; are  angular brackets denote averages over the collision rates and

Zero. parameters, the free time distributions, and the velocity dis-
Thus by neglecting all of the deviations in positions at thetributions for a dilute gas in equilibrium. We have also used

instant of binary collisionsr; 5, we can easily write an evo- the indices 1 and 2 to label the colliding particles in a typical

lution equation for the velocity deviation vector as the resultmatrix M. This matrix has a particularly simple structure
of a sequence of binary collisions in the system as when expressed in terms of the deviations of the center-of-

mass and relative velocities of particles 1 and 2 and the ve-
- ov(0). (15)  locity deviations of particles ,3.. N, which are not af-

5v(t)=Mal-Ma2---M al
fected by the 1-2 collision,

AK(t)
In Eq. (15), we use the facts that the dynamics of the system
is a sequence of binary collisions, labeled by the subscripts 1 00
a;j, with ag() the last collis_ion up to time, and where only M..=| A B 0] 17)
the velocities of two particles change, separated by free- 1.2
particle motions where none of the velocities change. For 0 01
low densities, the product of matrices on the right-hand side
of Eq. (15 can be thought of as a product of rand@iN  ere e have organized the velocity deviation vector so that
X dN matrices, since there are no correlations between the, ; (5\7 Stor S0 50 )T, where T denotes a
collisions in the sequences. The random elements of the Sé\;ns oséz%ﬁélfyogrghl o Ive'f“t submatrices aredadid di-
guence are the particles involved in the individual collisions, b PP

‘mensional. Thadx d dimensional submatrices andB are

the collision parameters of each collision, and the time inter-
vals, for each particle, between the collisions that it sufferseaSIIy obtained from Eq913) and (14) above. One easily
ees that dét ; ,=deB, which is simple to calculate. There-

Under these circumstances all of the Lyapunov exponent .
and the KS entropy of the system can be obtained, in prin-ore we find that
ciple, by determining the eigenvalues of this product of ran-
dom matrices, using the known distributions of free times v R
and collision parameters for a dilute gas in equilibrium. The  hxs/N=Z(In[ 2Tyzjvz/(o cos)]) for d=2 (18)
positive Lyapunov exponents and the KS entropy can be
obtained by using the fact that almost all trajectories in phase
space will separate with timg ast grows large, since the _ > _
probability of finding two nearby, but otherwise randomly v(Inl[2Tsglvzl/o]]) for d=3. 19
selected, trajectories that approach each other for arbitrarily
long times, is vanishingly small. The negative Lyapunov ex-Here 6 is the angle of incidence in a binary collision, with
ponents are obtained by considering the time reversed mo- 7/2< < /2 for two dimensions and€ =< =/2 in three
tion and using the fact that trajectories that approach eactimensions. Equationd8) and (19) are the central theoret-
other in the forward time direction will separate in the timeical results of this work. We have obtained explicit formulas
reversed motion. This analysis was applied to the randonfpr the KS entropy for a dilute gas of particles with strong
dilute, three-dimensional Lorentz gas by Latz, van Beijerenshort-range forces. We now give the explicit form of the
and Dorfmar{7], who were able to calculate the positive and integrals required for the calculation bfg for d=2 and 3.
negative Lyapunov exponents by analyzing the products ofor d=2 we obtain
random matrices similar to those in E(L5 along these
lines. Due to the increased size of the matrices considered
here, the determination of the individual Lyapunov expo- th/N:LI dljl%(l;l)f 40 260(02)[014
nents is still a formidable analytical problem. However the 2mJ,
determination of the KS entropy is relatively elementary, as wl2
we now show. Xf do o(7m—20) ov(vy)v(vy)

Suppose that the eigenvalues of the product of the matri- —ml2
ces on the right-hand side of E{.5) have the form expy;). " "
Then the logarithm of the determinant of this matrix product X f dTlf dr,e [0+ m2r(w2)]
will have the formtX=\;. Since almost all trajectories will 0
lead to separation, only the positive exponents will appear in -
this sum. Further, if we assume that the system is ergodic XIN[2T15v17l/ (o cos B)]. (20
then for long timed, all possible collision parameters and

free times will appear in the matrices. Thus we can write Here qu(J) is the Maxwell-Boltzmann velocity distribution

i=K(t) N function, »(v) is the collision frequency for particles with
14 . d . . . .
=lim = = velocity v, o(0) is the differential cross section for scatter-
hks= lim > In|deM, | > (In|detM 4},

e U =1 ing under an angl®, andJ, is a normalization factor ob-
(16)  tained by replacing the logarithmic term in the numerator by
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unity and equating the resulting expression to unity. The cor- 10 ——r T ——
responding expression for three dimensions is o theory —— |
5. fit, N=36 -
v g F ’ﬁ\n fit, N=64 -~ -
3 - - - > - MD, N=36 ¢
hks/N= 273 f dUl(ﬁO(Ul)f dvado(v2)|v 1y L RN DSMC, N=36 +
3 = . MD, N=64 O
2 = 6 . DSMC, N=64 x
X f dé sin 6 cos o (m—26)/ 2 = | Al i
0 > 8
<=2 4 \ﬂ\ -
2 o0 o &\;&\ i
% | agutvywin) | dn | d=2 .
0 0 0 5 L e
> 3@\\)(
X drye (117Dt 2r )l In[2T v,/ o]. - I
0 L ool il sl ol il sl P
(21) 10-7 107% 107 107* 107 107 107! 1
v

To evaluate these expressions we need the velocity-

dependent collision frequencies for particles with velocities FiG. 1. hys/(Nv) as a function of the collision frequency, for
51 ansz, since these frequencies are needed for the evalwplanar systems containing 36 and 64 hard disk&s measured in
ation of the average of Ifi;,. For particles with interactions the reduced units introduced in the main text. The points are labeled
of finite range expressions for these collision frequencies araccording to the computational method MD or DSMC, the dimen-
easily obtained from elementary kinetic theory, and explicitsiond=2, and the number of particlés. The smooth line is the
results can be given fdrs, after some straightforward nu- theoretical prediction according to E(22), and the(almost undis-

merical integrations. We find that for hard disk$<2) tinguishablg dashed and dotted lines are fits of Eg4) to the
experimental points foN=36 and 64, respectively. The fitting

v range is 10’<v<<102. The fit parametera andb are listed in
hks/N= E[—|n(m72)+0.209+ o(n)] (220  Tablel

The simulations, performed with both methods, are for 36
wherev=[(27Yna)/(Bm)¥?] is the average collision fre- and 64 disks in two dimensions, and for 32 and 108 spheres

quency of a dilute gas of hard disks at temperatlire in three. The usual periodic boundary conditions are em-
=(kgB) !, andkg is Boltzmann's constant. For a gas of Ployed. To present our data we use reduced units for which

hard spheres we find the particle diameterr, the kinetic energy per particle,
K/N= mEiJiZIZN, and the particle masa are unity. Time is

hks/N=1[ —In(7no>)+0.562+ O(n)], (23)  measured in units offic?N/K)¥?, and the number density

n=N/V in units of e~ 9, whereV is the volume of the simu-

wherev=[(47no?)/(fm)*2]. lation box.n is varied between I¥ and 0.1. Our choice for

To check these results we have carried out extensive nithe unit of energy corresponds to a temperaiufer which
merical simulations to compute the whole set of LyapunovkgT=K/N=1 in two dimensions, andkgT=(2/3)K/N
exponents for equilibrium hard-disk and hard-sphere sys=2/3 in three. The dependencetgfs/(Nv) on the collision
tems. hxg is obtained as the sum of all the positive expo-frequencyv is displayed in Figs. 1 and 2 for the respective
nents. In addition to the phase-space trajectory, the “exact'two- and three-dimensional systems studied here. As indi-
molecular-dynamics(MD) algorithm [12,13 follows the cated by the labels, the diamonds and squares denote MD
time evolution of a complete set of infinitesimal vectorsresults, whereas the plus signs and crosses refer to DSMC
8X;, 1=1,...,aN, in tangent space by using Ed6) and  data. It is obvious from the figures, that there is very good
(7) for the streaming between collisions, and exact collisionagreement between the MD and DSMC resultshigg/N v,
maps analogous to E@Y) for the discontinuous jumps at a and that this agreement persists even to the largest collision
collision. The tangent vectors are periodically reorthonor-frequencies of interest. We therefore do not distinguish in the
malized, and the Lyapunov exponents are obtained as thellowing discussion between these two independent sets of
time-averaged logarithms of the renormalization factors.  simulation data.

The MD method requires the precise localization of the The particle-number dependence of the Kolmogorov-
particle collision points and becomes inefficient for very low Sinai entropy per particle is found to be very small for hard
densities. We have therefore applied also a variant of thdisks, with the points for 36 and 64 particles practically un-
direct-simulation Monte CarldDSMC) technique to the distinguishable on the scale of Fig. 1. For hard spheres there
computation of the Lyapunov exponent$3], where the is a noticeable difference between the results Kor 32
phase-space dynamics of the system is modeled by appropfdashed and 108(dotted in Fig. 2. However, it is expected
ate probability distributions of the collision parameters andthat the larger of the two systems is already close to the
of the collision time, and the tangent-space dynamics rethermodynamic limit, and that a comparison of our finite-
mains completely deterministi8]. For very low densities particle data with the theoretical prediction, valid fér ,
the DSMC algorithm becomes exact and is much more effiis meaningful.
cient than the MD method. It is expected to fail for high  To facilitate this comparison, we rewrite Eq22) and
densities, for which correlated collisions become important.(23) according to
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20 T T T T T From an inspection of Table | we conclude that the theo-
X theory —— | retically expected value fa, which determines the slope of
e, fit, N=32 "~ the straight lines in the figures, is almost perfectly repro-
16 L > 3% fit, N=108 - . :
3% MD,N=32 ¢ duced by the fits. The theoretical values for the other param-
T @%&x DSMGANSS? & T eterb, however, are not recovered by the fitting procedure.
Q 12 F *‘«%\ DSMC, N=108 x This is reflected in the offset of the theoretically expected
‘\; L \%\H i smooth line with respect to the experimental results in the
= g L %ﬁ\x ] Figs. 1 and 2.
By To shed some light on the origin of this disagreement, we
i d=3 \ﬁxw 7 numerically evaluated Eq.16) by averaging over a
4 F ‘“’“*ax . molecular-dynamics simulation run. We find perfect agree-
L N ment of this average with the theoretical predictions of Egs.
I I I I (22) and (23). Moreover, a computer simulation where the
10-7 10°¢ 10 107t 107 1077 107t 1 terms ér o and 6r o are set equal to zero for eakhl col-
v lision yields results that do agree with E¢22) and(23), but

not with the results where these spatial displacements are

FIG. 2. hgs/(Nv), as a function of the collision frequency, for taxen into account. Thus, there appears to be a problem with
three-dimensional systems containing 32 and 108 hard sphei®s. h | f th ial deviations ST .
measured in the reduced units introduced in the main text. Th&N€ Neglect of the spatial deviation® = dry In going

points are labeled according to the computational method, MD ofrom Eq. (11) to Eq. (14). That is, the neglect 6F|’0
DSMC, the dimensiond=3, and the number of particld$. The  _ s, in Eq. (11) has not yet been justified by an analytic
smooth line is the theoretical prediction according to &9, and  cajcylation where such terms are included. In fact, a more
the dashed and dotted lines are fits of E2f) to the experimental o aijaq analysis reveals that indeed the inclusion of the ne-
points forN=32 and 108, respectively. The fitting range is 10 - . . .
<v<10-2. The fit parametera andb are listed in Table I glected terms yleld_s corrections to the coefficibntwhich
may crudely be estimated to be close to In 2. However, these
are very preliminary results which must be verified by more
— 2 extensive calculations. It is worth noting that in the case of
Mks/(Nv)=al =In(¥/vo) +b]+ 00, 24 the two- and three-dimensional Lorentg gas the neglect of
where vy=2[ #/(ma?) YA K/N)Y2 for hard disks, andy, SPatial deviations in the equivalent of Ed4) can be fully
=4(7ma?) ~ Y4 2K/3N)*? for hard spheres. Neglecting the justified, and that there the theoretical results for the analogs
higher-order terms and treatimgandb as fit parameters, this Of the coefficientsa andb agree very well with the com-
expression is fitted to the experimental datatigs/(Nv) in  puted simulation$5-8,14. Finally notice that the assump-
the range 10’<v»<10 2. The results form andb are sum- tions made do not affect the theoretical values of the leading
marized in Table I. The theoretical expectationlig/(Nv)  term involving only the parameter. Presently we are work-
is indicated by the smooth line in Fig. 1{a,b}  ing both on calculations of the terms neglected above and on
={0.5,0.209, for disks, and in Fig. 2{a,b}={1,0.562, for = a more systematic approach using methods based upon the
spheres. Bogoliubov-Born-Green-Kirkwood-Yuon hierarchy equa-
tions, which will provide a systematic density expansion of
TABLE I. Fit parameters for the fit of Eq23) to the experi- .
mentalhks/(Nv), for a system containiny hard disks @=2), or In conclusion, we have obtained the first theoretical val-
spheresd=3). The fitting range is 10'<v<10"% wherevisthe o5 for the leading term in the KS entropy per particle for

collision frequency in the reduced units introduced in the main text. . ; ) } ~
MD and DSMC refer to the numerical method used for the compu-dIIUte gases with short-range forces, both for two- and three

tation. The quoted errors for the fit parameterandb are standard dl_menS|onaI systems. Th.e comparlson of these predictions
with results of computer simulations are excellent, but we do

deviations. } - . -
not yet have a final analytic expression for the first-order
d N Method a b corrections to these results. The computer simulations, how-
ever, do provide accurate values for these corrections, to
2 36 MD 0.498-0.001 1.33%0.003 which analytic results can eventually be compared. There
2 36 DSMC 0.506:0.001 1.326:0.006 seems to be little doubt that our results can be extended to
2 64 MD 0.499-0.001 1.366:0.005 dense gases and to nonequilibrium states of interest for the
2 64 DSMC 0.506:0.001 1.358:0.009 escape-rate or the Gaussian thermostat approaches for relat-
ing transport coefficients to the chaotic properties of fluid
2 0 Theory 0.5 0.209 systems.
3 32 MD 0.998-0.001 1.420.01 The authors are pleased to acknowledge the hospitality of
3 32 DSMC 1.006:0.001 1.3&0.01 . -~ . . . -
3 108 VD 1.030.03 134 0.29 thg Erwin Schrdm_ger Institut of the pnlver5|taN|en where
this work was initiated. We would like to thank Dr. Arnulf
s 108 DSMC 1.036:0.002 1.340.02 Latz and Ramses van Zon for helpful comments on this and
3 © Theory 1.0 0.562 related subjects; Dr. Charles Ferguson for helpful comments

and assistance with numerical integrations; and the National
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