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Kolmogorov-Sinai entropy for dilute gases in equilibrium
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We consider the density expansion of the Kolmogorov-Sinai~KS! entropy per particle for a dilute gas in
equilibrium, and use methods from the kinetic theory of gases to compute the leading term. For an equilibrium
system, the KS entropyhKS is the sum of all of the positive Lyapunov exponents characterizing the chaotic
behavior of the gas. We computehKS /N, whereN is the number of particles in the gas. This quantity has a

density expansion of the formhKS /N5an@2 ln ñ1b1O(ñ)#, wheren is the single-particle collision frequency

and ñ is the reduced number density of the gas. The theoretical values for the coefficientsa and b are
compared with the results of computer simulations, with excellent agreement fora, and less than satisfactory
agreement forb. Possible reasons for this difference inb are discussed.@S1063-651X~97!06911-0#

PACS number~s!: 05.45.1b, 05.20.Dd
ot
a

d,
e

th
ti

T
K

ing
su
ct
no
po

s

e

ll
d
e
n

or
e
o
-
e

ti
a
qu
an
st
.

ac
e

es

KS
-
ra-

d

ant

-
se

f
lar
a

the
es.
of

um,
er

ro-
n

cal
as
for

disk
ly
ion
in-
ite
st
One of the important quantities characterizing the cha
behavior of a dynamical system is the Kolmogorov-Sin
~KS! entropy,hKS @1,2#. If the system is isolated and close
i.e., there is no escape of particles from the system, th
according to Pesin’s theorem@2#, hKS is the sum of all the
positive Lyapunov exponents of the system, where
Lyapunov exponents characterize the rate of exponen
separation of the system’s trajectories in phase space.
quantity is of considerable interest because a positive
entropy implies that the system is chaotic with strong mix
and ergodic properties, and because the KS entropy mea
the rate at which information about the phase space traje
ries is produced by the dynamics. Further, sums of Lyapu
exponents figure prominently in the expressions for trans
coefficients of fluids in terms of dynamical quantities@3,4#.
Recently, methods based upon the kinetic theory of ga
have been applied to compute the chaotic properties
simple systems such as hard disk and hard sphere Lor
gases@5–8#, as well as Lorentz lattice gases@9,10#. This
work has shown that it is possible to calculate theoretica
Lyapunov exponents for Lorentz gases at low density un
a variety of equilibrium and nonequilibrium situations. Th
theoretical results agree very well with computer simulatio
for the same quantities. Here we show how kinetic the
methods can be extended to a calculation of the leading t
in the density expansion of the equilibrium KS entropy
dilute gases composed ofN particles interacting with short
range forces. This extension of the methods developed
lier for Lorentz gases to systems ofN moving particles al-
lows us to begin a thorough exploration of the chao
properties of systems with large numbers of moving p
ticles, as well as of Lorentz gases, both in and outside e
librium states. In subsequent publications van Beijeren
van Zon @11# will describe methods to obtain the large
positive Lyapunov exponent for a dilute gas in equilibrium

We consider a gas composed ofN identical particles in
equilibrium. The particles obey classical mechanics, e
have massm51, and their positions and velocities are d
561063-651X/97/56~5!/5272~6!/$10.00
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noted byrW i andvW i , respectively, withi 51, . . . ,N. The par-
ticles interact with strongly repulsive, short-range forc
with a finite range of the interparticle force,s. In the case
that the particles are hard disks or hard spheres,s is the
diameter of each particle. Our goal is to determine the
entropy per particle,hKS/N, in the thermodynamic limit, as
suming that the system is in thermal equilibrium at tempe
ture T, and at low densities withnsd!1, wheren is the
number density,n5N/V, V is the volume of the system, an
d is the dimension of the system,d52 and 3.

We consider the trajectory of our system on the const
energy surface in the 2dN-dimensional phase space,G, start-

ing from some initial point X05„rW1(0),vW 1(0),rW2(0),

vW 2(0), . . . ,rWN(0),vW N(0)…. We then consider a bundle of tra
jectories that start at infinitesimally nearby points in pha
space, with each trajectory in the bundle denoted byX(0)

1dX(0), for some infinitesimal dX(0)5„drW1(0),

dvW 1(0), . . . ,drWN(0),dvW N(0)…. The time rate of separation o
this trajectory bundle in the various directions perpendicu
to the direction of flow, if exponential, is characterized by
set of nonzero Lyapunov exponents which are positive in
expanding directions and negative in the contracting on
The KS entropy is, for our system, given by the sum of all
the positive Lyapunov exponents, by Pesin’s theorem@1,2#.
In order to determine the Lyapunov exponents and their s
we need to follow the dynamics of the trajectory bundle ov
a time t very large compared to some characteristic mic
scopic timet0 , which for low-density systems can be take
to be the mean free time between collisions for a typi
particle. Recently Dellago, Posch and Hoover, as well
Gaspard and Dorfman, obtained the equations of motion
a trajectory bundle in phase space for a system of hard
or hard sphere particles@4,12,13#. These equations also app
to any system of particles with strong short-range interact
potentials, provided we neglect effects due to collisions
volving more than two particles at a time, or due to the fin
duration of collisions taking place in the fluid. To lowe
5272 © 1997 The American Physical Society
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56 5273KOLMOGOROV-SINAI ENTROPY FOR DILUTE GASES . . .
order in the density, these multiple collision and finite co
sion time effects may be ignored, and the dynamics may
thought of as periods of free motion of the particles punc
ated by binary collisions between pairs of particles. Dur
the free motion, the positions and velocities of the partic
change with time according to

rW i~ t !5rW i~0!1vW i~0!t, ~1!

vW i~ t !5vW i~0! for i 51, . . . ,N. ~2!

Here the timet50 represents the instant of the last bina
collision in the system, and timet is some time between th
last binary collision and the next. When a collision tak
place between particlesk and l , say, there is an effectively
instantaneous change in the velocities of particlesk and l
while the positions and velocities of all of the otherN22
particles are unaffected. Immediately after thek- l collision,
the positions and velocities of the two particles,k and l are
given by

vW k85vW k1@vW lk•n̂#n̂, ~3!

vW l85vW l2@vW lk•n̂#n̂, ~4!

rW l5rWk1sn̂. ~5!

Here n̂ is a unit vector from the center of particlek to the
center of particlel at the point of closest approach during t
binary collision,vW lk5vW l2vW k andvW lk•n̂<0. The free motion
of the otherN22 particlesiÞk and l is not affected by the
k- l collision. Now we consider the other trajectories in t
nearby bundle. We assume that the bundle is sufficie
narrow that all trajectories in the bundle exhibit the sa
collisions in the same sequence, with slight differences in
times of the collisions, in the velocities and positions befo
and after the collisions, and in the points of closest approa
The analysis of Dellago, Posch, and Hoover leads imm
ately to equations of motion for the deviations of the po
tions and velocities in the trajectory bundle from the ma
trajectory. During the free motion between collisions,drW i

anddvW i evolve according to

drW i~ t !5drW i~0!1tdvW i~0!, ~6!

dvW i~ t !5dvW i~0!. ~7!

Whenever a collision takes place in the system, the de
tions in positions and velocities of the colliding particles a
directly affected, while those of the other particles are n
The velocity deviations for the colliding pair, say particlesk
andl , can be obtained from Eqs.~3! and~4! by taking linear
deviations; that is,

dVW lk8 [ 1
2 @dvW k81dvW l8#5dVW lk , ~8!

dvW lk8 [dvW l82dvW k85dvW lk22~dvW lk•n̂!n̂

22@~vW lk•dn̂!n̂1~vW lk•n̂!dn̂#, ~9!
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where, for later convenience, we introduce the center
mass velocityVW lk5 1

2 @vW k1vW l #, in addition to the relative ve-
locity of the colliding pair of particles. Heredn̂ is the infini-
tesimal displacement of the unit vector in the direction
closest approach, due to the displacement of the traject
andn̂•dn̂50. To calculatedn̂ we use the coupled equation
for the location of the collision for both the undisplaced a
the displaced trajectories:

sn̂5rW l ,01t lvW l2rWk,02tkvW k , ~10!

sdn̂5drW l ,02drWk,01vW lkdt lk1t ldvW l2tkdvW k , ~11!

where we have kept terms to linear order in the deviatio
Here rW l ,0 is the position of particlel at the instant of its last
collision with another particle in the system, and similar
for rWk,0 . Also, t l is the time elapsed from the last collision o
particle l until its collision with k, with a similar definition
for tk . Finally dt lk is the difference in time between thel -k
collision for the displaced and the undisplaced trajector
We assume here that in our calculation ofhKS/N, the domi-
nant terms will come from terms proportional toTkl5(tk
1t l)/2 which is on the order of the free time between co
sions of particles in the system, and which scales invers
with the density of the gas. For low densities this free tim
can be quite large, and our assumption is that we can neg
the termdrW l ,02drWk,0 in Eq. ~11! compared to terms propor
tional to the times between collisions for each of the p
ticles. This assumption will be discussed further in the co
cluding remarks. Then using the conditionn̂•dn̂50, and
changing to center-of-mass and relative velocities, we fina
obtain equations for the change in the displaced cente
mass and displaced relative velocities of particlesk and l at
the k- l collision:

dvW i85dvW i for iÞk,l , ~12!

dVW kl8 5dVW kl , ~13!

dvW lk8 5dvW lk22~dvW lk•n̂!n̂2S 2

s D H t lkF S ~vW lk•dVW kl!

2
v lk

2

~vW lk•n̂!
~dVW kl•n̂!D n̂1dVW kl~vW lk•n̂!2vW lk~dVW kl•n̂!G

1TklF S ~vW lk•dvW lk!2
v lk

2

~vW lk•n̂!
~dvW lk•n̂!D n̂

1~vW lk•n̂!dvW lk2vW lk~dvW lk•n̂!G J . ~14!

Here t lk5t l2tk . Using these equations we can express
change of the velocity deviations of all of the particles a
k- l collision as a matrixM kl acting on the column vectordv
whose elements are the velocity deviations,dvW i for i
51, . . . ,N, as dv85M kl•dv. Here M kl has the value 1
along the diagonal for the elements corresponding to thN
22 particles which are not involved in thek- l collision, and
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5274 56van BEIJEREN, DORFMAN, POSCH, AND DELLAGO
nonzero elements for the changes in the velocity deviati
for particlesk and l , which can be obtained from Eqs.~13!
and~14! in terms of the pre-collision velocity deviations an
the timesTkl and t lk . All other matrix elements ofM kl are
zero.

Thus by neglecting all of the deviations in positions at t
instant of binary collisionsdrW i ,0 , we can easily write an evo
lution equation for the velocity deviation vector as the res
of a sequence of binary collisions in the system as

dv~ t !5Ma1
•Ma2

•••MaK~ t !
•dv~0!. ~15!

In Eq. ~15!, we use the facts that the dynamics of the syst
is a sequence of binary collisions, labeled by the subscr
a j , with aK(t) the last collision up to timet, and where only
the velocities of two particles change, separated by fr
particle motions where none of the velocities change.
low densities, the product of matrices on the right-hand s
of Eq. ~15! can be thought of as a product of randomdN
3dN matrices, since there are no correlations between
collisions in the sequences. The random elements of the
quence are the particles involved in the individual collisio
the collision parameters of each collision, and the time in
vals, for each particle, between the collisions that it suffe
Under these circumstances all of the Lyapunov expone
and the KS entropy of the system can be obtained, in p
ciple, by determining the eigenvalues of this product of ra
dom matrices, using the known distributions of free tim
and collision parameters for a dilute gas in equilibrium. T
positive Lyapunov exponents and the KS entropy can
obtained by using the fact that almost all trajectories in ph
space will separate with timet, as t grows large, since the
probability of finding two nearby, but otherwise random
selected, trajectories that approach each other for arbitra
long times, is vanishingly small. The negative Lyapunov e
ponents are obtained by considering the time reversed
tion and using the fact that trajectories that approach e
other in the forward time direction will separate in the tim
reversed motion. This analysis was applied to the rand
dilute, three-dimensional Lorentz gas by Latz, van Beijer
and Dorfman@7#, who were able to calculate the positive a
negative Lyapunov exponents by analyzing the products
random matrices similar to those in Eq.~15! along these
lines. Due to the increased size of the matrices conside
here, the determination of the individual Lyapunov exp
nents is still a formidable analytical problem. However t
determination of the KS entropy is relatively elementary,
we now show.

Suppose that the eigenvalues of the product of the m
ces on the right-hand side of Eq.~15! have the form exp(tli).
Then the logarithm of the determinant of this matrix produ
will have the formt(l i . Since almost all trajectories wil
lead to separation, only the positive exponents will appea
this sum. Further, if we assume that the system is ergo
then for long timest, all possible collision parameters an
free times will appear in the matrices. Thus we can write

hKS5 lim
t→`

1

t (
j 51

j 5K~ t !

lnudetMa j
u5

Nn

2
^ lnudetM1,2u&,

~16!
s
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wheren is the average collision frequency per particle,
that the number of collisions taking place in the gas per u
time is Nn/2 ~each collision involves two particles!, and the
angular brackets denote averages over the collision rates
parameters, the free time distributions, and the velocity d
tributions for a dilute gas in equilibrium. We have also us
the indices 1 and 2 to label the colliding particles in a typic
matrix M . This matrix has a particularly simple structu
when expressed in terms of the deviations of the center
mass and relative velocities of particles 1 and 2 and the
locity deviations of particles 3, . . . ,N, which are not af-
fected by the 1-2 collision,

M1,25S 1 0 0

A B 0

0 0 1
D . ~17!

Here we have organized the velocity deviation vector so t
dvT5(dVW 12,dvW 21,dvW 3 , . . . ,dvW N)T, where T denotes a
transpose. The four upper-left submatrices are alld3d di-
mensional. Thed3d dimensional submatricesA andB are
easily obtained from Eqs.~13! and ~14! above. One easily
sees that detM1,25detB, which is simple to calculate. There
fore we find that

hKS/N5
n

2
^ ln@ 2T12uvW 21u/~s cosu!#& for d52 ~18!

5n^ lnu@2T12uvW 21u/s#u& for d53. ~19!

Hereu is the angle of incidence in a binary collision, with
2p/2<u<p/2 for two dimensions and 0<u<p/2 in three
dimensions. Equations~18! and ~19! are the central theoret
ical results of this work. We have obtained explicit formul
for the KS entropy for a dilute gas of particles with stron
short-range forces. We now give the explicit form of th
integrals required for the calculation ofhKS for d52 and 3.
For d52 we obtain

hKS/N5
n

2pJ2
E dvW 1f0~vW 1!E dvW 2f0~vW 2!uvW 12u

3E
2p/2

p/2

du s~p22u!/sn~v1!n~v2!

3E
0

`

dt1E
0

`

dt2e2@t1n~v1!1t2n~v2!#

3 ln@2T12uvW 12u/~s cosu!#. ~20!

Heref0(vW ) is the Maxwell-Boltzmann velocity distribution
function, n(v) is the collision frequency for particles with
velocity vW , s(u) is the differential cross section for scatte
ing under an angleu, and J2 is a normalization factor ob-
tained by replacing the logarithmic term in the numerator
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unity and equating the resulting expression to unity. The c
responding expression for three dimensions is

hKS/N5
n

2pJ3
E dvW 1f0~vW 1!E dvW 2f0~vW 2!uvW 12u

3E
0

p/2

du sin u cosus~p22u!/s2

3E
0

2p

dfn~v1!n~v2!E
0

`

dt1E
0

`

3dt2e2@t1n~v1!1t2n~v2!# ln@2T12uvW 12u/s#.

~21!

To evaluate these expressions we need the veloc
dependent collision frequencies for particles with velocit

vW 1 andvW 2 , since these frequencies are needed for the ev
ation of the average of lnT12. For particles with interactions
of finite range expressions for these collision frequencies
easily obtained from elementary kinetic theory, and expl
results can be given forhKS, after some straightforward nu
merical integrations. We find that for hard disks (d52)

hKS/N5
n

2
@2 ln~ns2!10.2091O~n!# ~22!

wheren5@(2p1/2ns)/(bm)1/2# is the average collision fre
quency of a dilute gas of hard disks at temperatureT
5(kBb)21, and kB is Boltzmann’s constant. For a gas
hard spheres we find

hKS/N5n@2 ln~pns3!10.5621O~n!#, ~23!

wheren5@(4p1/2ns2)/(bm)1/2#.
To check these results we have carried out extensive

merical simulations to compute the whole set of Lyapun
exponents for equilibrium hard-disk and hard-sphere s
tems.hKS is obtained as the sum of all the positive exp
nents. In addition to the phase-space trajectory, the ‘‘exa
molecular-dynamics~MD! algorithm @12,13# follows the
time evolution of a complete set of infinitesimal vecto
dX l , l 51, . . . ,2dN, in tangent space by using Eqs.~6! and
~7! for the streaming between collisions, and exact collis
maps analogous to Eq.~9! for the discontinuous jumps at
collision. The tangent vectors are periodically reorthon
malized, and the Lyapunov exponents are obtained as
time-averaged logarithms of the renormalization factors.

The MD method requires the precise localization of t
particle collision points and becomes inefficient for very lo
densities. We have therefore applied also a variant of
direct-simulation Monte Carlo~DSMC! technique to the
computation of the Lyapunov exponents@13#, where the
phase-space dynamics of the system is modeled by appr
ate probability distributions of the collision parameters a
of the collision time, and the tangent-space dynamics
mains completely deterministic@8#. For very low densities
the DSMC algorithm becomes exact and is much more e
cient than the MD method. It is expected to fail for hig
densities, for which correlated collisions become importa
r-
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The simulations, performed with both methods, are for
and 64 disks in two dimensions, and for 32 and 108 sphe
in three. The usual periodic boundary conditions are e
ployed. To present our data we use reduced units for wh
the particle diameters, the kinetic energy per particle
K/N5m( ivW i

2/2N, and the particle massm are unity. Time is
measured in units of (ms2N/K)1/2, and the number density
n5N/V in units ofs2d, whereV is the volume of the simu-
lation box.n is varied between 1028 and 0.1. Our choice for
the unit of energy corresponds to a temperatureT for which
kBT5K/N51 in two dimensions, andkBT5(2/3)K/N
52/3 in three. The dependence ofhKS/(Nn) on the collision
frequencyn is displayed in Figs. 1 and 2 for the respecti
two- and three-dimensional systems studied here. As in
cated by the labels, the diamonds and squares denote
results, whereas the plus signs and crosses refer to DS
data. It is obvious from the figures, that there is very go
agreement between the MD and DSMC results forhKS/Nn,
and that this agreement persists even to the largest colli
frequencies of interest. We therefore do not distinguish in
following discussion between these two independent set
simulation data.

The particle-number dependence of the Kolmogoro
Sinai entropy per particle is found to be very small for ha
disks, with the points for 36 and 64 particles practically u
distinguishable on the scale of Fig. 1. For hard spheres th
is a noticeable difference between the results forN532
~dashed! and 108~dotted! in Fig. 2. However, it is expected
that the larger of the two systems is already close to
thermodynamic limit, and that a comparison of our finit
particle data with the theoretical prediction, valid forN→`,
is meaningful.

To facilitate this comparison, we rewrite Eqs.~22! and
~23! according to

FIG. 1. hKS /(Nn) as a function of the collision frequency, fo
planar systems containing 36 and 64 hard disks.n is measured in
the reduced units introduced in the main text. The points are lab
according to the computational method MD or DSMC, the dime
sion d52, and the number of particlesN. The smooth line is the
theoretical prediction according to Eq.~22!, and the~almost undis-
tinguishable! dashed and dotted lines are fits of Eq.~24! to the
experimental points forN536 and 64, respectively. The fitting
range is 1027,n,1022. The fit parametersa and b are listed in
Table I.
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hKS/~Nn!5a@2 ln~n/n0!1b#1O~n2!, ~24!

where n052@p/(ms2)#1/2(K/N)1/2 for hard disks, andn0
54(pms2)21/2(2K/3N)1/2 for hard spheres. Neglecting th
higher-order terms and treatinga andb as fit parameters, this
expression is fitted to the experimental data forhKS/(Nn) in
the range 1027,n,1022. The results fora andb are sum-
marized in Table I. The theoretical expectation forhKS/(Nn)
is indicated by the smooth line in Fig. 1,$a,b%
5$0.5,0.209%, for disks, and in Fig. 2,$a,b%5$1,0.562%, for
spheres.

TABLE I. Fit parameters for the fit of Eq.~23! to the experi-
mentalhKS /(Nn), for a system containingN hard disks (d52), or
spheres (d53). The fitting range is 1027,n,1022, wheren is the
collision frequency in the reduced units introduced in the main te
MD and DSMC refer to the numerical method used for the com
tation. The quoted errors for the fit parametersa andb are standard
deviations.

d N Method a b

2 36 MD 0.49960.001 1.33960.003
2 36 DSMC 0.50060.001 1.32660.006
2 64 MD 0.49960.001 1.36660.005
2 64 DSMC 0.50060.001 1.35860.009

2 ` Theory 0.5 0.209

3 32 MD 0.99860.001 1.4260.01
3 32 DSMC 1.00060.001 1.3860.01
3 108 MD 1.0360.03 1.3460.29
3 108 DSMC 1.03660.002 1.3460.02

3 ` Theory 1.0 0.562

FIG. 2. hKS /(Nn), as a function of the collision frequency, fo
three-dimensional systems containing 32 and 108 hard spheresn is
measured in the reduced units introduced in the main text.
points are labeled according to the computational method, MD
DSMC, the dimension,d53, and the number of particlesN. The
smooth line is the theoretical prediction according to Eq.~23!, and
the dashed and dotted lines are fits of Eq.~24! to the experimental
points for N532 and 108, respectively. The fitting range is 1027

,n,1022. The fit parametersa andb are listed in Table I.
From an inspection of Table I we conclude that the the
retically expected value fora, which determines the slope o
the straight lines in the figures, is almost perfectly rep
duced by the fits. The theoretical values for the other para
eterb, however, are not recovered by the fitting procedu
This is reflected in the offset of the theoretically expect
smooth line with respect to the experimental results in
Figs. 1 and 2.

To shed some light on the origin of this disagreement,
numerically evaluated Eq.~16! by averaging over a
molecular-dynamics simulation run. We find perfect agre
ment of this average with the theoretical predictions of E
~22! and ~23!. Moreover, a computer simulation where th

termsdrWk,0 anddrWk,0 are set equal to zero for eachk- l col-
lision yields results that do agree with Eqs.~22! and~23!, but
not with the results where these spatial displacements
taken into account. Thus, there appears to be a problem

the neglect of the spatial deviationsdrW l ,02drWk,0 in going

from Eq. ~11! to Eq. ~14!. That is, the neglect ofdrW l ,0

2drWk,0 in Eq. ~11! has not yet been justified by an analyt
calculation where such terms are included. In fact, a m
detailed analysis reveals that indeed the inclusion of the
glected terms yields corrections to the coefficientb, which
may crudely be estimated to be close to ln 2. However, th
are very preliminary results which must be verified by mo
extensive calculations. It is worth noting that in the case
the two- and three-dimensional Lorentz gas the neglec
spatial deviations in the equivalent of Eq.~14! can be fully
justified, and that there the theoretical results for the anal
of the coefficientsa and b agree very well with the com-
puted simulations@5–8,14#. Finally notice that the assump
tions made do not affect the theoretical values of the lead
term involving only the parametera. Presently we are work-
ing both on calculations of the terms neglected above and
a more systematic approach using methods based upon
Bogoliubov-Born-Green-Kirkwood-Yuon hierarchy equ
tions, which will provide a systematic density expansion
hKS.

In conclusion, we have obtained the first theoretical v
ues for the leading term in the KS entropy per particle
dilute gases with short-range forces, both for two- and thr
dimensional systems. The comparison of these predict
with results of computer simulations are excellent, but we
not yet have a final analytic expression for the first-ord
corrections to these results. The computer simulations, h
ever, do provide accurate values for these corrections
which analytic results can eventually be compared. Th
seems to be little doubt that our results can be extende
dense gases and to nonequilibrium states of interest for
escape-rate or the Gaussian thermostat approaches for
ing transport coefficients to the chaotic properties of flu
systems.
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